0.E.P.A. S.E.D.O. 98 AUG 23 *** II: 53 August 12, 1996 Mr. Tom Webster Environmental Coordinator Wheeling-Pittsburgh Steel Corporation Yorkville Plant 219 Public Road Yorkville, OH 43971 Dear Mr. Webster: Re: Closure of Drum Storage Area Martins Ferry Plant Martins Ferry, Ohio Fluor Daniel GTI Project No. 010030561 Fluor Daniel GTI provided oversight for closure of the drum storage area at the Martins Ferry plant. Closure was conducted in accordance with the procedures contained in the Generator Closure Plan for the Drum Storage Area prepared in July 1995 and approved by the OEPA. Closure required completion of the following tasks: - Removal of remaining waste drums and loose dirt from the storage pad. - 2. Decontamination of the storage pad. - Verification of decontamination procedures. - 4. Inspection of the drum storage pad. This letter report documents results of the closure. ## 1.0 Removal of Remaining Waste Drums and Loose Dirt Wheeling-Pittsburgh Steel Corporation (WPSC) removed the remaining drums from the pad. In addition, WPSC removed the dirt pile that was located at the southern end of the pad adjacent to Building #100. This dirt was placed into a roll off box, sampled, and analyzed by American Waste for disposal characterization. The data indicate that the dirt is not hazardous. Copies of the analytical results for the dirt pile are contained in Attachment 1. #### 2.0 Decontamination of the Storage Pad WPSC contracted Fluor Daniel GTI to provide closure oversight for the former drum storage area. WPSC contracted Industrial Waste Control (IWC), located in Youngstown, Ohio, to decontaminate the pad. IWC mobilized a tank truck and two vac trucks to the site for each wash event. Decontamination consisted of a total of two wash/rinse events. Each wash/rinse event consisted of a detergent water wash followed by two rinses with potable water. The two wash/rinse events were completed on April 25 and July 1, 1996 respectively. Decontamination wash/rinse waters were drummed and tested for appropriate disposal. Prior to initiating the wash cycle, the outlet from the storm water catch basin located along the southeast edge of the pad was blocked to prevent wash waters from entering the storm sewer system. Decontamination was accomplished by spraying a portion of the pad with a detergent/potable water solution. The wash water was immediately collected with vacuum lines and contained in the vac trucks. Following the detergent water wash, the contents of the vac trucks were emptied into drums. Verification samples were collected for analysis, as discussed below. The drums were labeled, dated, sealed, and placed on a section of the pad for storage prior to disposal. Following the detergent water wash, the vac trucks were cleaned with potable water. The first rinse cycle was then initiated and was accomplished by spraying the pad with potable water and collecting the rinseate in the vac trucks. Following completion of the rinse cycle, the contents of the vac trucks were emptied into drums. Verification samples were collected for analysis. The drums were labeled, dated, sealed and placed on a portion of the pad for storage prior to disposal. This procedure was repeated for the second rinse cycle. The entire wash/rinse cycle was repeated on July 1, 1996. #### 3.0 Verification Sampling and Analysis In order to document the degree of decontamination of the pad, the closure plan contained provisions for collecting rinseate samples and analyzing the samples for a specified list of parameters. The analytical list that was contained in the approved closure plan was developed based upon an evaluation of the materials stored in the drums on the pad versus the constituents contained in Appendix VIII to OAC 3745-51-11. Based on this evaluation, it was determined that rinseate samples would be analyzed for barium, cadmium, lead, xylene, and ethylbenzene. Verification limits were established based on the provisions contained in the OEPA's Closure Plan Review Guidance (OEPA, Division of Solid and Hazardous Waste Management, May, 1991). The following table identifies the analytical program and verification limits for closure of the drum storage pad. MMW:\P:\staff\...\wpsc\cl-ltr.wpd #### Table 1 | Parameter | Verification | |--------------|--------------| | | Limit | | | (mg/l) | | Barium | 30 | | Cadmium | 0.15 | | Lead | 0.75 | | Xylene | 1 | | Ethylbenzene | 1 | For the April 25 wash event, Fluor Daniel GTI collected verification samples for analysis following the second rinse cycle. Rinseate samples were collected directly from the lip of the vac truck and placed into laboratory prepared sample jars. Rinseate samples were returned to RECRA Laboratory, located in Monroeville, Pennsylvania, for analysis for the parameters listed in Table 1. Results of the verification sampling program for the April 25 wash/rinse event are summarized in Table 2 and illustrated in Figure 1. The data indicate that the initial wash/rinse event was not successful in reducing constituent concentrations to verification limits. In addition to the collection of rinseate samples for verification analysis, samples were also collected of the soil/sediment sludge that accumulated in the vac trucks. Sludge samples were collected following the detergent water wash and after each rinse cycle. Sludge samples from the detergent water wash and a composite of the two rinse cycles were analyzed for disposal characterization by American Waste Management's Antech Laboratory. For the sludge sample collected following the detergent wash, the only parameter reported in excess of respective detection limits was Total Petroleum Hydrocarbons (TPH) at a concentration of 8,600 mg/kg. For the composite rinse sludge sample, TPH was measured at 5,600 mg/kg and TCLP lead at 0.13 mg/l. All other parameters were non-detect in the composite rinse sample. Neither sample was considered hazardous for disposal purposes. The closure plan required that a second wash/rinse cycle be conducted in an attempt to further reduce constituent concentrations. The second wash/rinse event was conducted on July 1. Prior to initiating the second wash/rinse cycle, Fluor Daniel GTI collected a sample of the potable water from the tank, and one rinseate sample from each of the vac trucks in order to document that the potable water wash and the vac trucks were "clean". Rinseate samples were collected from the vac trucks by spraying the inside of the vac tank with the water from the potable water tank. One sample was collected from the lip of each of the vac trucks. Rinseate samples from the vac truck and the potable water sample were analyzed for total and dissolved lead, barium, and cadmium, xylene and ethylbenzene. Analytical results are summarized in Table 3. The data indicate that, except for ethylbenzene that was measured at a concentration of 5.8 ug/l, the potable water and the vac trucks did not contain constituent concentrations in excess of the verification limits. MMW:\P:\staff\...\wpsc\cl-ltr.wpd FLUOR DANIEL GTI Fluor Daniel GTI collected verification samples following the detergent water wash and after the first and second rinse cycles. Results of these analyses are provided in Table 2. The data indicate that, although constituent concentrations decreased, the lead concentration from the second rinse cycle exceeds the verification limit of 0.75 mg/l. However, the rinseate data indicate that in the detergent water wash and first rinse, a significant portion of the measured concentrations is attributable to particulates in the sample. By the final rinse, the measured total concentrations approximately equal the dissolved concentrations indicating that particulate matter has been removed and the measured concentration can be attributed to solubilizing material from the pad. #### 4.0 Summary The closure plan required that WPSC complete a total of two complete wash/rinse cycles. If after the second wash/rinse cycle, the rinseate data indicate that verification limits are not met, then WPSC is to provide the rinseate data to the OEPA. The data indicate that the second wash/rinse cycle was not successful in reducing the lead concentration in the rinseate samples to the verification limit. The rinseate sample from the second rinse returned a lead concentration of 1.3 mg/l. However, the total lead concentration (1.3 mg/l) approximately equals the dissolved lead concentration of 1.2 mg/l indicating that particulates have been removed and the remaining concentrations are due to solubilizing material from the pad. Concentrations of barium, cadmium, ethylbenzene and total xylenes are below respective verification limits. A review of the data generated for wastes stored on the pad and soils removed from the pad prior to initiation of closure activities indicate that none of these materials contained TCLP lead in concentrations exceeding 0.21 mg/l. Wastes stored on the pad included alkali sludge, waste acids, paint wastes, and waste grease. Lead was not detected in drummed samples of wastes stored on the pad. TCLP lead was detected in samples collected from the dirt pile located at the southern end of Building 100 (0.051 mg/l) and in dirt samples from the eastern edge of the pad (0.21 mg/l). In addition, the TCLP lead concentration in the composite sludge sample collected from the first two rinse cycles was 0.13 mg/l. These concentrations are significantly less than the lead concentrations obtained in the final rinseate sample which would indicate that the lead remaining on the pad is not the result of waste storage activities associated with the pad. It is likely that the lead concentrations measured in the leachate are the result of historic use of the pad by vehicles driving onto or parked on the pad. In addition, the pad is located in the proximity of Ohio State Route 7, which could also be a source of lead emissions to the pad. The EPA Document, "Demonstration of Nonpoint Pollution Abatement through Improved Street Cleaning Practices" (August 1979), indicates that the average nationwide pollutant strength associated with street surface particulates for lead range from 0 mg/kg to 10,000 mg/kg. The average strength is 1,800 mg/kg indicating that vehicle emissions contribute a significant quantity of lead to the environment (Attachment 2). MMW:\P:\staff\...\wpsc\cl-ltr,wpd Therefore, although the final lead rinseate concentration exceeds the verification limit of 0.75 mg/l, Fluor Daniel GTI maintains that the final rinseate concentration is sufficient for demonstrating closure of the pad. Hazardous waste and hazardous waste constituents associated with former drum storage activities have been removed from the pad. The residual lead on the pad is most likely related to vehicle emissions associated with the historic use of the pad by moving and/or parked vehicles and to the proximity of the pad to Ohio State Route 7. The residual lead on the pad poses no threat to human health since it is not readily bioavailable to humans who come into contact with the pad. Based on the above discussion, Fluor Daniel GTI maintains that no further action is required with respect to closure of the drum storage pad. Fluor Daniel GTI appreciated this opportunity to provide our services to Wheeling Pittsburgh Steel Corporation. A final report will be issued for this project pending receipt of comments from the OEPA on the verification data. The report will summarize closure procedures and include copies of analytical reports and waste manifests. In the meantime, if you have any questions or if I can be of further assistance, I can be reached at 412/823-5300. Sincerely, Fluor Daniel GTI Mary M. Washko Lead Geologist cc: File Though Washlo August 1996 # Attachment 1 Analytical Results FFR-05 96 14:10 FROM: ANTECH 412-527-7793 TO: 4122579331 : FAGE: 03 ### ANTECH LTD. CASE WARRATIVE | I. | PRO. | JECT LOGIN INFO | RMATION: | • | ¥1 | |------|------|--------------------------|----------------------|----------------------|-------------------| | | ٨ï | PROJECT NUMBE | 23: | | ; | | | | | | 27 | 1 | | | | ANTECH LTD.: | 96-0348 | | | | | | CLIENT: | AWS ID# 19014-2 (J | im Smith) | | | | B: | SAMPLE IDENTI | FICATIONS: | 1 | * 4 | | | | | | i i | | | | | ANTECH LTD.: | 9601-1988 | | | | | | CLIENT: | Pad Cleanup | | | | | ٥: | SUIPPING/RECE | IVING COMMENTS: | | 1
1 | | | | | | Ť. | ** | | | | None | | - | | | | | | | i | 4 | | II. | PRE | PARATION/ANALYS | SIS COMMENTS: | 48 | 1 | | | | | | | * | | | A: | CENERAL CHEMI | STRY: | 4 | 197 | | | | None | | | | | | | | | | 39. | | | B: | METALS: | | | | | | | None | | | | | | | | | | | | | C: | ORGANICS: | | | | | | | | | ì | | | | | 1. VOLATILES: | | | 4 | | | | None | | | | | | | | | 3 | | | | | 2. SEMIVOLATI | LES: | | | | | | None | | | | | | | Table Carama Anna Santan | | 1 | | | | | 3. PESTICIDES, | /PCBS: | C: | 9 | | | | None | | · | | | III. | GEN. | ERAL COMMENTS: | | j | # A | | | | Trailing z | eroes and decimal pl | aces appearing on th | e data should not | | | | be interpre | ced as precision of | the analytical proc | edura, but rather | | | | as a result | t of reporting forms | <u> </u> | | | | | Please refe | er to the enclosed T | CLP Regulatory Level | s table for | | | | appropriate | regulatory levels | and hagardoug vasto | numbers. | | | | | | | | | | | | | 4 | | 412-327-7793 TO: 4122579331 PAGE: 04 Table 1 Coneral Bara Table American Waste Management Services, Inc. Antech Ltd. Project No. 96-0348 Waste Characterisation: AWS ID# 19014-2 (Jim Smith) Wheeling Pittsburgh Steel; Martin's Perry | | | 1 | | ntification | |-----------------------------------|----------------------|----------|--|---| | Parameter | Analytical
Method | Unics | 9601-1988
Pad
Cleanup
(1/25/96) | 9601-1989
Method
Blank
(1/26/96) | | | | | . * | | | Cyanide (Total) | 9012(1) | mg/kg | <1.0 | <1.0 | | Flash Point | 1010(1) | F | >200 | NAP(2) | | pH | 9045(1) | pH units | 7.55 | NAP | | Sulfide (Reactive) | 7.3.4.1/9030(1) | mg/kg | 97 | <10 | | Total Petroloum Hydrocarbons | 3550(1)/418.1(3) | mg/kg | 11000 | <40 | | Polychlorinated Biphonyls | 8080(1) | mg/kg | 6.0 | <1.0 | | TCLP(4) Metals: | | | | | | Silver (TCLP) | 6010(1) | mg/l | <0.10 | <0.10 | | Arsenic (TCLP) | 6010(1) | mg/1 | <0.10 | <0.10 | | Barium (TCLP) | 6010(1) | mg/l | <10 | <10 | | Cadmium (TCLP) | 6010(1) | mg/l | <0.10 | <0.10 | | Chromium (TCLP) | 6010(1) | mg/1 | <0.10 | <0.10 | | Mercury (TCLP) | 7470(1) | mg/l | <0.010 | <0.010 | | Lead (TCLP) | 6010(1) | mg/1 | 0.24 | <0.10 | | Selenium (TCLP) | 7740(1) | mg/l | <0.10 | <0.10 | | TCLP Extraction Fluid Data: | | ; | | i . | | Extraction Fluid | 1311(1) | | No.1 | No.1 | | pH with Deionized Vater | | pH units | 8.09 | NAP | | pH After Addition of 1 Normal HCL | | pH units | 3.59 | NAP | | pH of TCLP Extract | | pH units | 6.00 | 4.91 | | Amount of Sample Extracted | | g | 50.0 | NAP | ⁽¹⁾U.S. Environmental Protection Agency, 1987. Test Methods for Evaluating Solid Waste, SW-846, 3rd ed., Office of Solid Waste and Emergency Response, Washington, DC. ⁽²⁾ NAP - Not applicable. (3) U.S. Environmental Protection Agency, 1983, Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020. Environmental Monitoring and Support Laboratory, Cincinnati, ⁽⁴⁾ TCLP - Toxicity Characteristic Leaching Procedure. FED 05 06 14:11 FROM: ANTECH 410 307 7793 TO: 4122579331 PAGE: 03 Table 2 TOT.P(1) Organic Analyses American Waste Management Services, Inc. Antech Ltd. Project No. 96-0348 Vasta Characterization: AVS ID# 19014-2 (Jim Smith) Whealing Fittsburgh Steel; Martin's Ferry | | | : | | ntification | |---|-------------|-------------------|--|---| | Parameter | CAS(2) | Unics | 9601-1988
Pad
Gleanup
(1/25/96) | 9601-1989
Method
Blank
(1/26/96) | | | | į | * | | | TCLP Volatile Organic Analyses: (8260)(3) | 10 Miles 20 | į. | 66 | | | Benzens | 71-43-2 | μg/1 | <50 | <50 | | 2-Butanone | 78-93-3 | μg/1 | <5000 | <5000 | | Carbon tetrachloride | 56-23-5 | $\mu g/1$ | <50 | <50 | | Chlorobenzene | 108-90-/ | ив/1 | <1000 | <1000 | | Chloroform | 67-66-3 | μg/l | <500 | <500 | | 1,2-Dichloroothens | 107-06-2 | 48/1 | <50 | <50 | | 1,1-Dichloroethene | 75-35-4 | µg/1 | <50 | <50 | | Tetrachloroethene | 127-18-4 | PB/1 | <50 | <50 | | Trichloroethene | 79-01-6 | ug/1 | <50 | <50 | | Vinyl chloride | 75-01-4 | ug/1 | <50 | <50 | | TCLP Base/Neutral Extractables: (8270)(3) | | | | X. | | 1,4-Dichlorobenzene | 106-46-7 | μg/1 | <.500 | <500 | | 2,4-Dinitrotoluene | 121-14-2 | µg/1 | <50 | <50 | | Hexachlorobutadiene | 87-68-3 | P8/1 | <50 | <50 | | Hexachlorobenzene | 118-74-1 | 48/1 | <100 | <100 | | Hexachloroethane | 67-72-1 | 1/94 | <500 | <500 | | Nitrobenzena | 98-95-3 | µg/1 | <100 | <100 | | Pyridine | 110-86-1 | $\mu_{\rm B}/1$ | <500 | <500 | | TCLP Acid Extractables: (8270)(3) | | Constitution of A | | 4 | | Total Cresol (TCLP) | (4) | µ8/1 | <5000 | <\$000 | | Pentachlorophenol - | 87-86-5 | µg/1 | <5000 | <5000 | | 2,4,5-Trichlorophenol | 95-95-4 | μg/1 | <5000 | <\$000 | | 2,4,6-Trichlorophenol | 88-06-2 | μg/l | <100 | <100 | ⁽¹⁾TCLP - Toxicity Characteristic Leaching Procedure. (2)CAS - Chamical Abstracts Services. (3)U.S. Environmental Protection Agency, 1987, Test Methods for Evaluating Solid Waste, SW-846, 3rd ed., Office of Solid Waste and Emergency Response, Washington, DC. ⁽⁴⁾m-Cresol 108-39-4, o-Cresol 95-48-7, and p-Cresol 106-44-5. Table 1 General Data Table American Waste Management Services, Inc. Antech Ltd. Project No. 96-1755 Waste Characterization; AWS ID# 19108-2; (Jim Smith) Wheeling Pittsburgh Steel; Martin's Ferry | | | | Sample Ide | ntificatio | |-----------------------------------|------------------|----------|-----------------------|--------------------------------| | | Analytical | | 9604-2861
Pad Wash | 9604-2862
Method
GeBlank | | Parameter | Method | Units | (4/25/96) | 7 (4/29/96) | | Cyanide (Total) | 9012(1) | mg/kg | <1.0 | <1.0 | | Flash Point | 1010(1) | °F | >200 | NAP(2) | | pH | 9045(1) | pH units | 7.68 | NAP | | Sulfide (Reactive) | 7.3.4.1/9030(1) | mg/kg | <10 | NAP | | Total Petroleum Hydrocarbons | 3550(1)/418.1(3) | mg/kg | 8600 | <40 | | Polychlorinated Biphenyls | 8080(1) | mg/kg | <1.0 | <1.0 | | TCLP(4) Metals: | | | | | | Silver (TCLP) | 6010(1) | mg/l | <0.10 | <0.10 | | Arsenic (TCLP) | 6010(1) | mg/l | <0.10 | <0.10 | | Barium (TCLP) | 6010(1) | mg/l | <10' | <10 | | Cadmium (TCLP) | 6010(1) | mg/l | <0.10 | <0.10 | | Chromium (TCLP) | 6010(1) | mg/l | <0.10 | <0.10 | | Mercury (TCLP) | 7470(1) | mg/l | <0.010 | <0.010 | | Lead (TCLP) | 6010(1) | mg/l | <0.10 | <0.10 | | Selenium (TCLP) | 7740(1) | mg/l | <0.10 | <0.10 | | TCLP Extraction Fluid Data: | | | | | | Extraction Fluid | 1311(1) | :- | No.1 | No.1 | | pH with Deionized Water | | pH units | 8.49 | NAP | | pH After Addition of 1 Normal HCL | | pH units | 3.71 | NAP | | pH of TCLP Extract | | pH units | 6.21 | 4.90 | | Amount of Sample Extracted | * | g | 45.0 | NAP | ⁽¹⁾U.S. Environmental Protection Agency, 1987, Test Methods for Evaluating Solid Waste, SW-846, 3rd ed., Office of Solid Waste and Emergency Response, Washington, DC. (2)NAP = Not applicable. ⁽³⁾U.S. Environmental Protection Agency, 1983, Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio. ⁽⁴⁾TCLP - Toxicity Characteristic Leaching Procedure. Table 2 TCLP(1) Organic Analysis American Waste Management Services, Inc. Antech Ltd. Project No. 96-1755 Waste Characterization; AWS ID# 19108-2; (Jim Smith) Wheeling Pittsburgh Steel; Martin's Ferry | | | | Sample Ide | ntification | |--|----------|-----------|-----------------------|-----------------------| | | CAS(2) | | 9604-2861
Pad Wash | 9604-2862
Method | | Parameter | Number | Units | (4/25/96) | 40 Blank
(4/29/96) | | | | | | (1/2)/30 | | TCLP Volatile Organic Analysis:(8260)(3) | | | | | | Benzene | 71-43-2 | $\mu g/1$ | <50 | <50 | | 2-Butanone | 78-93-3 | $\mu g/1$ | <5000 | <5000 | | Carbon tetrachloride | 56-23-5 | µg/1 | <50 | <50 | | Chlorobenzene | 108-90-7 | $\mu g/1$ | <1000 | <1000 | | Chloroform | 67-66-3 | $\mu g/1$ | · <500 | <500 | | 1,2-Dichloroethane | 107-06-2 | $\mu g/l$ | <50 | <50 | | 1,1-Dichloroethene | 75-35-4 | µg/1 | <50 | <50 | | Tetrachloroethene | 127-18-4 | $\mu g/1$ | <50 | <50 | | Trichloroethene | 79-01-6 | $\mu g/1$ | <50 ' | <50 | | Vinyl chloride | 75-01-4 | $\mu g/1$ | <50 | <50 | | TCLP Base/Neutral Extractables:(8270)(3) | * | | 4 | | | 1,4-Dichlorobenzene | 106-46-7 | μg/1 | <500 | <500 | | 2,4-Dinitrotoluene | 121-14-2 | μg/1 | <50 | <50 | | Hexachlorobutadiene | 87-68-3 | μg/1 | <50 | <50 | | Hexachlorobenzene | 118-74-1 | $\mu g/1$ | <100 | <100 | | Hexachloroethane | 67-72-1 | $\mu g/1$ | <500 | <500 | | Nitrobenzene | 98-95-3 | $\mu g/1$ | <100 | <100 | | Pyridine | 110-86-1 | $\mu g/l$ | <500 | <500 | | TCLP Acid Extractables: (8270)(3) | | | | | | Total Cresol (TCLP) | (4) | $\mu g/1$ | <5000 | <5000 | | Pentachlorophenol | 87-86-5 | μg/l | <5000 | <5000 | | 2,4,5-Trichlorophenol | 95-95-4 | μg/l | <5000 | <5000 | | 2,4,6-Trichlorophenol | 88-06-2 | μg/1 | <100 | <100 | ⁽¹⁾TCLP - Toxicity Characteristic Leaching Procedure. ⁽²⁾CAS - Chemical Abstracts Services. ⁽³⁾U.S. Environmental Protection Agency, 1987, Test Methods for Evaluating Solid Waste, SW-846, 3rd ed., Office of Solid Waste and Emergency Response, Washington, DC. ⁽⁴⁾m-Cresol 108-39-4, o-Cresol 95-48-7, and p-Cresol 106-44-5. Table 1 General Data Table American Waste Management Services, Inc. Antech Ltd. Project No. 96-1754 Waste Characterization; AWS ID# 19107-2; (Jim Smith) Wheeling Pittsburgh Steel; Martin's Ferry | | | | Sample Ide | ntificatio | |-----------------------------------|------------------|------------------|------------------------|------------| | | | | 9604-2854
Pad Rinse | 9604-2855 | | | Analytical | | Composite S | Method | | Parameter | Method | Units | (4/25/96) | (4/29/96) | | Cyanide (Total) | 9012(1) | mg/kg | <1.0 | <1.0 | | Flash Point | 1010(1) | °F | >200 | NAP(2) | | pH | 9045(1) | pH units | 7.86 | NAP | | Sulfide (Reactive) | 7.3.4.1/9030(1) | mg/kg | <10 | NAP | | Total Petroleum Hydrocarbons | 3550(1)/418.1(3) | mg/kg | 5600 | <40 | | Polychlorinated Biphenyls | 8080(1) | mg/kg | <1.0 | <1.0 | | TCLP(4) Metals: | | and the state of | | | | Silver (TCLP) | 6010(1) | mg/l | <0.10 | <0.10 | | Arsenic (TCLP) | 6010(1) | mg/l | <0.10 | <0.10 | | Barium (TCLP) | 6010(1) | mg/l | <10 ' | <10 | | Cadmium (TCLP) | 6010(1) | mg/l | <0.10 | <0.10 | | Chromium (TCLP) | 6010(1) | mg/1 | <0.10 | <0.10 | | Mercury (TCLP) | 7470(1) | mg/l | <0.010 | <0.010 | | Lead (TCLP) | 6010(1) | mg/l | 0.13 | <0.10 | | Selenium (TCLP) | 7740(1) | mg/l | <0.10 | <0.10 | | TCLP Extraction Fluid Data: | | | | | | Extraction Fluid | 1311(1) | 8€. | No.1 | No.1 | | pH with Deionized Water | | pH units | 8.70 | NAP | | pH After Addition of 1 Normal HCL | | pH units | 2.01 | NAP | | pH of TCLP Extract | | pH units | 6.35 | 4.90 | | Amount of Sample Extracted | | g | 45.0 | NAP | ⁽¹⁾U.S. Environmental Protection Agency, 1987, Test Methods for Evaluating Solid Waste, SW-846, 3rd ed., Office of Solid Waste and Emergency Response, Washington, DC. ⁽²⁾NAP = Not applicable. (3)U.S. Environmental Protection Agency, 1983, Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio. ⁽⁴⁾ TCLP - Toxicity Characteristic Leaching Procedure. Table 2 TCLP(1) Organic Analysis American Waste Management Services, Inc. Antech Ltd. Project No. 96-1754 Waste Characterization; AWS ID# 19107-2; (Jim Smith) Wheeling Pittsburgh Steel; Martin's Ferry | | | | Sample Ide | ntification | |---|------------------|-----------|---|---| | Parameter | CAS(2)
Number | Units | 9604-2854 Pad Rinse CompositeS(4/25/96) | 9604-2855
Method
use Blank
(4/29/96) | | TCLP Volatile Organic Analysis: (8260)(3) | | | | | | Benzene | 71-43-2 | $\mu g/1$ | <50 | <50 | | 2-Butanone | 78-93-3 | μg/l | <5000 | <5000 | | Carbon tetrachloride | 56-23-5 | µg/1 | <50 | <50 | | Chlorobenzene | 108-90-7 | $\mu g/l$ | <1000 | <1000 | | Chloroform | 67-66-3 | $\mu g/1$ | > <500 | <500 | | 1,2-Dichloroethane | 107-06-2 | $\mu g/1$ | <50 | <50 | | 1,1-Dichloroethene | 75-35-4 | $\mu g/1$ | <50 | <50 | | Tetrachloroethene | 127-18-4 | µg/1 | <50 | <50 | | Trichloroethene | 79-01-6 | µg/1 | <50 ' | <50 | | Vinyl chloride | 75-01-4 | $\mu g/1$ | <50 | <50 | | TCLP Base/Neutral Extractables: (8270)(3) | 000 | | • | | | 1,4-Dichlorobenzene | 106-46-7 | $\mu g/1$ | <500 | <500 | | 2,4-Dinitrotoluene | 121-14-2 | $\mu g/1$ | <50 | <50 | | Hexachlorobutadiene | 87-68-3 | $\mu g/1$ | <50 | <50 | | Hexachlorobenzene | 118-74-1 | $\mu g/1$ | <100 | <100 | | Hexachlorosthane | 67-72-1 | $\mu g/1$ | <500 | <500 | | Nitrobenzene | 98-95-3 | $\mu g/1$ | <100 | <100 | | Pyridine | 110-86-1 | $\mu g/1$ | <500 | <500 | | TCLP Acid Extractables: (8270)(3) | | | | | | Total Cresol (TCLP) | (4) | $\mu g/1$ | <5000 | <5000 | | Pentachlorophenol | 87-86-5 | $\mu g/1$ | <5000 | <5000 | | 2,4,5-Trichlorophenol | 95-95-4 | μg/l | <5000 | <5000 | | 2,4,6-Trichlorophenol | 88-06-2 | µg/1 | <100 | <100 | ⁽¹⁾TCLP - Toxicity Characteristic Leaching Procedure. ⁽²⁾ CAS - Chemical Abstracts Services. ⁽³⁾U.S. Environmental Protection Agency, 1987, Test Methods for Evaluating Solid Waste, SW-846, 3rd ed., Office of Solid Waste and Emergency Response, Washington, DC. ⁽⁴⁾m-Cresol 108-39-4, o-Cresol 95-48-7, and p-Cresol 106-44-5. # Toxicity Characteristic Leaching Procedure (TCLP) Regulatory Levels | Contaminant | Regulatory
Leval (mg/l) | USEPA Hazardous
Waste Number | |-----------------------|----------------------------|---------------------------------| | Arsenic | 5.0 | D004 | | Barium | 100.0 | D005 | | Cadmium | 1.0 | D006 | | Chromium | 5.0 | D007 | | Lead | 5.0 | D008 | | Mercury | 0.2 | D009 | | Selenium | 1.0 | D010 | | Silver | 5.0 | DOIL | | Benzene | 0.5 | D018 | | Carbon Tetrachloride | 0.5 | D019 | | Chlorobenzene | 100.0 | D021 | | Chloroform | 6.0 | D022 | | Cresol | 200.0 | D026 | | 1,4-Dichlorobenzene | 7.5 | D027 | | 1,2-Dichloroethane | 0.5 | D028 | | l,1-Dichloroethene | 0.7 | D029 | | 2,4-Dinitrotoluene | 0.13 | D030 | | Hexachlorobenzene | 0.13 | D032 | | Hexachlorobutadiene | 0.5 | D033 | | Hexachloroethane | 3.0 | D034 | | 2-Butanone | 200.0 | D035 | | Nitrobenzene | 2.0 | D036 | | Pentachlorophenol | 100.0 | D037 | | Pyridine | 5.0 | D038 | | Tetrachloroethene | 0.7 | D039 | | Trichloroethene | 0.5 | D040 | | 2,4,5-Trichlorophenol | 400.0 | D041 | | 2,4,6-Trichlorophenol | 2.0 | D042 | | Vinyl chloride | 0.2 | D043 | | GROUNDWATER | TECHNOLOGY | INC | |-------------|-------------|------| | WHEELING PI | TISBURGH S | TEEL | | AMALYTIC | CAL RESULTS | | | Date: 05/06/96
Time: 15:59:33 | : 05/06/96 : 05/06/96 : 15:59:33 GROUNDWATER TECHNOLOGY INC WHEELING PITTSBURGH STEEL ANALYTICAL RESULTS | | | | | Rept: ANO35
Page: | | |--|---|---|----------------------------------|---|---|----------------------|-----------| | J | ob Number & Lab | Sample ID:
Sample ID:
ample Date: | P96-0104 P6010401 | Rinse 2 RE
P96-0104 P6010401RE
04/25/96 | comp. soil
P96-0104 P6010402
04/25/96 | | | | Analyte | UNITS OF MEASURE | RL | Result | Result | Result | | 92 885 52 | | TOTAL METALS
Lead - Total
Barium - Total
Cadmium - Total | NG/L
NG/L
MG/L | 0.020
0
0.0050 | 6.4
4.5
0.15 | 6.5
NA
NA | HA
HA
HA | | | | TCLP METALS 6010/7470 Arsenic - Total Barium - Total Cadmium - Total Chromium - Total Lead - Total Mercury - Total Selenium - Total Silver - Total | MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L | 0.10
0.050
0.0050
0.010
0.10
0.0002
0.50
0.010 | NA
NA
NA
NA
NA
NA | NA
NA
NA
NA
NA
NA
NA | 0.10 U
1.4
0.0095
0.010 U
0.10 U
0.00020U
0.50 U
0.010 U | | | | WEI CHEMISTRY ANALYSIS Chloride Sulfate Total Phosphorous Toxicity Characteristic Leaching Proce Toxicity Characteristic Leaching Proce | MG/KG
MG/KG
MG/KG
INVALID
INVALID | 10
10.0000
0.10
1.0000
1.0000 | NA
NA | NA
NA
NA
NA
NA | 30.0
89
253
DOME
DOME | | | Chloroform 1,2-Dichloroethane 1,1-Dichloroethene Tetrachloroethene Trichloroethene Vinyl chloride | 4 | a | |---|------| | | _ | | | | | | • | | 1 | · | | | _ | | | | | | | | | | | | 2 | | 1 | 1 | | (| ר | | 7 | 7 | | ١ | • | | | - | | | | | | 7 | | 1 | 1 | | (| Z | | • | 7/71 | | | 2 | | 1 | ı | | | Clie
Job Number & L | nt Sample ID:
ab Sample ID:
Sample Date: | 96-0104 P6010401 | comp. soil
P96-0104 P6010402
04/25/96 | | | |--|------------------------|--|----------------------|---|---|--| | Analyte | (MG/L) | RL | Result | Result | | | | METHOD 8260 - TCL VOLATILE ORGAN
Ethylbenzene
Total Xylenes | ics | 5 5 | 5 U
5 U | на
На | | | | Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 | | 50-200
50-200
50-200 | 50
50
50 | NA
NA
NA | | | | Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4 | | 88-110
86-115
80-120 | 49
35
46 | HA
RA
HA | | | | Analyte | (UG/L) | RL | Result | Result | | | | METHOD 8760 - TCLP VOLATILES Benzene 2-Butanone Carbon Tetrachloride Chlorobenzene Chloroform | | 5
10
5
5 | NA
MA
MA
MA | 100 U
200 U
100 U
100 U
100 U | 8 | | 5 5 5 5 NA AM NA NA NA U U U U 100 100 100 100 100 | | ANT CODE | PROJEC | INAME | tope | igh | - Ma | This Ferry | NUMBE | :A | / | | to far. | | Ž | | | 37 | 1 | :/ | | | |--|---------------------|--|------------------------------|-------------|--------------------------|------------------------------|-------------------------------------|---|--------|--------|--|---------|------|-----------------------|--------------------------|----------|----------|--------------|----------|-------------|----------| | SAI
(Sig | MPLERS
mature) (| Though | 太 | Wax | IR | 2 | | CONTAIN | EAS | (A) | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | X / | 16.6 | 3 | | 2/2 | | T.IMLONOM HO | // | | JARKS OR | | | STA. NO. | DATE | TIME | 0034 | GRAD | ¥ L L | STATION LOCATION | | V | | 3/ | \$/ | | Y (| 2/2 | | /8 | A | | OBSC | AVATIONS | | L | nse2 | 0 /25 | 910 | | X | | | uc, | 4 | X | X | | | 1 | - | | | | Lead | result | s Hon. | | Con | ny, Soil | 04/25 | 8.30 | X | | | | bagge | با_ | + | X | X | X_ | X | X. | | | | | | | | | | | | | | | | - | - | + | +- | - | - | | | - | - | - | | | | | | | | | | - | 1 | | | + | ╁╴ | - | - | | | \vdash | - | - | - | 1100 | + | - | - | | | | | _ | | | | | | | | | | | | | \vdash | ···· | | - | + | + | | | | - | \dashv | | + | | • | | | _ | | | ****** | | | | | | + | 1 | T | | | | | | \dashv | + | _ | 1 | | | | | | \perp | | | | | | | | | | | | | | | | + | - | - | | | _ | - | _ | _ | \dashv | | | | | Reline | guished by: (S. | gnature) | | Dat
O | 2/4 | Time | Received by: (Signature) | | Aelino | uished | by: (Sig | natur | θ) | | Date | 1 | îme | Rec | eived by | r. (Signatu | re) | | Telin | quished by: (5) | by: (Signature) Date Time Received by: (Signature) | | | Received by: (Signature) | Relinquished by: (Signature) | | | | | | Date | ī | ime | Received by: (Signature) | | | | | | | | Relinquished by: (Signature) Date Time Received for Laboratory b | | | Received for Labernatory by: | (Signature) | - 14/26/90 1:64 p | | | | | | 1 | | | hest Chain of Custody | | | | | | | | | ISTE | AIBUTION: Or | ginal accor | mpanies s | hipme | int; Co | py to C | oordinator Field Files. The lay PH | 29 | | 3 | Y | tmk | ien | L.c | | # | | | | Tag # | | P96-0104 Date: 07/23/96 ## Groundwater Technology Inc RUSH ANALYSIS & SOIL COMPOSITE Sample Summary Recra LabNet Page: 1 Rept: AN0954 Sample ID: TANK Lab ID: P6101001 Date Collected: 07/01/96 Time Collected: 08:00 Date Received: 07/02/96 Project No: PA6A6257 Client No: L70023 P.O. No: | | | | Detection | | | Date/Time | | |---------------------------------|---------|------|-----------|-------|--------|-----------|---------| | Parameter | Result | Flag | Limit | Units | Method | Analyzed | Analyst | | 8020-XYLENE & ETHYLBENZENE ONLY | | | | | | | | | Ethylbenzene | <0.20 | U | 0.20 | UG/L | 8020 | 07/12/96 | BD | | Total Xylenes | <0.30 | U | 0.30 | UG/L | 8020 | 07/12/96 | BD | | Surrogates: | | | | | | | | | a,a,a-Trifluorotoluene | 101 | | 0 | × | 8020 | 07/12/96 | BD | | Metals Analysis | | | | | | | | | Lead - Total | <0.10 | U | 0.10 | MG/L | 6010 | 07/11/96 | JMY | | Barium - Total | 0.072 | | 0.050 | MG/L | 6010 | 07/11/96 | JMY | | Cadmium - Total | <0.0050 | U | 0.0050 | MG/L | 6010 | 07/11/96 | JMY | | Barium - Soluble | 0.075 | | 0.050 | MG/L | 6010 | 07/12/96 | JHY | | Cadmium - Soluble | <0.0050 | U | 0.0050 | MG/L | 6010 | 07/12/96 | JMY | | Lead - Soluble | <0.10 | U | 0.10 | MG/L | 6010 | 07/12/96 | JMY | 1A6A6257-1 P94-1010 FLUOR DANIEL GTI CHAIN OF CUSTODY RECORD SITE ID PROJECT NAME SAMPLERS (SIGNATURE) NUMBER CONDUCTIVITY OF REMARKS OR CONTAINERS **OBSERVATIONS** SAMPLE ID DATE TIME DEPTH 07/01 0800 3 Truck # 1 07/01/08/5 2 Truck 12 07/01 0830 27/01/12/0 4 0761 1610 Rime * 2 07/01/1830 4 Relinquished by: (Signature) Date Time Received by: (Signature) Relinquished by: (Signature) Date Time Received by: (Signature) Date Time Received by: (Signature) Date Time Received by: (Signature) Relinquished by: (Signature) Date Time Received for Laboratory by: (Signature) Relinquished by: (Signature) Date Time Ice Chest Temp · Ice Chest Temp Chain of Custody 72/12/2:00 Tag # *DISTRIBUTION: Original accompanies shipment; copy to Coordinator Field Files. # Attachment 2 # **EPA Document** United States Environmental Protection Agency Municipal Environmental Research Laboratory Cincinnati OH 45268 EPA-600/2-79-161 August 1979 Research and Development Summer **\$EPA** Demonstration of Nonpoint Pollution Abatement Through Improved Street Cleaning Practices TABLE III-21 SOLID LOADING RATES AND COMPOSITION--NATIONWIDE MEANS AND SUBSTITUTIONS OF THE NATIONWIDE MEANS AT 80% CONFIDENCE LEVEL* (AMY, ET AL., 1974) | | | lbs/curb
mi/day | | | | .,, | | in mic | rogram | s per | gram of o | T | | | | | No./ | gram | |--------------------------|----------------|--------------------|---------------------|----------------------|--------------------|--------------------|--------------------|------------------|------------------|------------------|---------------------|--------------------|------------------|-----------------|-----------------|------------------|--------------------|--------------------| | | Category | Loading | BOD ₅ | COD | OPO4 | NO3 | OrgN | Cq | Cr | Cu | Fe | РЬ | Mn | 111 | Sr | Zn | TCOLI+ | FCOL I+ | | Climate | Northeast | ²⁹¹ c | | | | | 5,970 _c | 2.6 _b | 139 _b | | 17,700 _b | 870 _c | 363 _a | ²¹ c | 27 _b | 260 _b | | 4.4Σ5 _C | | | Southeast | 103 _b | 29,100 _b | | 2,240 _a | | 1,970 _a | | | 137 _b | | 1,370 _b | | 21 _b | 28 _b | | | 7.0E4d | | | Southwest | 50 _c | | | 470 _b | | | | 241 _a | 78 _a | | 2,520 _b | | 57 _b | 15 | | 5.7E6 _d | | | | Northwest | 30 _c | | | | | | | 246 _a | | 34,500 _b | 2,600 _b | | | 10 _c | 480 _a | 6.8E5 _f | 1.1E4 | | Land Use | Openspace | Residential | | 14,000 _b | 82,000 _b | 850 _b | 550 _c | 1,800 | | 3.5 | 93, | | 1,430 _b | | 28 _b | | | | | | | Commercial | 74 _c | 58,700 _c | 269,000 _c | 2,250 _c | 1,580 _c | 6.430 _a | | | 133 _b | | 3,440 _b | | 48 _b | | 520 _b | | | | | Light Industry | | | | | | | | | | | | | | | .5/ | | | | | Heavy Industry | | 8 | | | | | | 278 _b | | 28,600 _b | 1,160 _c | 570 _b | | | | 8.2£5 _e | l | | Average Daily
Traffic | < 500 | | | | | | | | | | | 1,210 _d | | | | 252 _b | | 6.9Σ4 | | No./day | 500-5,000 | | 9,500 _c | 83,000 _c | 741 _d | 419 _b | | | | v | 18,900 _a | 1,060 | | 17 _d | 34 _c | - | | 3.425 | | | 5,000-15,000 | | | | | | | | | | | • | | • | 18 _a | | | _ | | | < 15,000 | 82 _d | | | | | | | | | | | 357 _a | | • | | 3.825 | | | | All data** | 156 _b | 19.900 _b | 140,000 _b | 1,280 _b | 804 _b | 2,950 _b | 3.4 _b | 211 | 104 _a | 22,000 _a | 1,810 | 2,100 | 35 _a | 21 _a | 370 _a | _ | 1.7Σ5 | ^{*}Only those subset means are shown which differ from the mean of the set of all data at the \$0-percent confidence level (Student t \ge 1.39. Degrees of Freedom \ge 10). Total number of permitted substitutions = 103. Percent Standard Error of the Mean Subscripting Code: a=0-9, b=10-19, c=20-29, d=30-39, +Coliform counts are expressed in computer notation, i.e. $\Sigma 5=10^5$. ** Average TPO4 is 2,930°C and NH4 is 2,640°C 92 TABLE 3-2. AVERAGE NATIONWIDE POLLUTANT STRENGTHS ASSOCIATED WITH STREET SURFACE PARTICULATES | Parameter (ppm ^a except as noted) | | Minimum
Strength | Maximum
Strength | Standard
Deviation | Ratio of Standard
Deviation to Mean | |--|---------------------|---------------------|---------------------|-----------------------|--| | BOD ₅ (b) | 70,000e | 8500e | 270,000e | 80,000 ^e | 1.1 | | COD (b) | 140,000 | 17,000 | 530,000 | 160,000 | 1.1 | | Ortho POA (b) | 1300 | 14 | 6700 | 1400 | 1.1 | | Total PO4 (b) | 2900 | 210 | 5400 | f | - | | NO ₃ (b) | 800 | 20 | 16,000 | 2600 | 3.3 | | NH ₄ (b) | 2600 | 600 | 5400 | f | - | | (jeldahl N (b) | 3000 | 450 | 13,000 | 3100 | 1.0 | | cd (b) | 3.4 | 0 | 25 | 3.6 | 1.1 | | Cr (b) | 210 | 3 | 760 | 110 | 0.52 | | Cu (b) | 100 | 8 | 290 | 100 | 1.0 | | Fe (b) | 22,000 | 2200 | 72,000 | 11,000 | 0.50 | | Pb (b) | 1800 | 0 | 10,000 | 2,000 | 1.1 | | in (b) | 420 | 100 | 1600 | 220 | 0.52 | | N1 (P) | 35 | 0 | 170 | 38 | 1.1 | | Sr (b) | 21 | 0 | 110 | 21 | 1.0 | | Zn (b) | 370 | 21 | 1100 | 210 | 0.57 | | Total coliforms | 15 | 20 | 120 | | | | (no./gram (d) | 2.5x10 ⁶ | 1.2x10 ⁴ | 8.6x107 | 8 | 9 '= | | Fecal coliforms | | | - | | | | (no./gram) (d) | 1.7x10 ⁵ | 6.0 | 1.7x10 | 8 | - | | Asbestos (fibers/gram) (c) | 160,000 | 0 | 770,000 | 180,000 | 1.1 | | Rubber (c) | 4600 | 500 | 11,000 | 2,600 | 0.57 | | p, p-DDD (d) | 0.082 | 0.0002 | 0.27 | 0.080 | 0.98 | | p, p-DDT (d) | 0.075 | 0.0004 | 0.38 | 0.12 | 1.6 | | Dieldrin (d) | 0.028 | 0.003 | 0.074 | 0.028 | 1.0 | | Endrin (d) | 0.00028 | 0 | 0.0022 | 0.00073 | 2.6 | | Lindane (d) | 0.0022 | 0 | 0.019 | 0.0063 | 2.9 | | Methoxychlor (d) | 0.50 | 0 | 3.1 | 1.1 | 2.2 | | Methyl parathion (d) | 0.0024 | 0 | 0.022 | 0.0073 | 3.0 | | PCBs (d) | 0.77 | 0.0 | 7 2.3 | 0.76 | 1.0 | appm = microgram of pollutant per gram of total dry solids; the mean total solids (b) accumulation was 150 lb/curb-mile/day, with a range of 3 to 2700 and a standard deviation of 370 lb/curb-mile/day. These data indicate that a control measure (such as conventional street cleaning methods) that is most effective in removing large particle sizes may be unable to remove enough of those pollutants found in the less abundant, smaller particle sizes. Therefore, it may be difficult to meet objectives unless extra effort is expended. However, street cleaning may remove important amounts of these pollutants because they are also found in the more abundant larger particle sizes. The effectiveness of street cleaning, therefore, depends on the specific service area characteristics and program objectives. bAmy, et al. (1974) - a compilation of the results of many studies Shaheen (1975) dSartor and Boyd (1972) e BOD = 1/2 COD (see Colston, 1974) f Few samples (less than 10) ⁸Very large variance.